Discussion: "The Job Ladder, Unemployment Risk, and Incomplete Markets"

by Alex Clymo, Piotr Denderski, Yusuf Mercan & Benjamin Schoefer

Matthew McKernan 5th Mannheim Workshop on Quantitative Macroeconomics 13 September 2024

Bank of England & University of Oxford

The views expressed in this discussion are those of the author, and not necessarily those of the Bank of England or its committees.

Main Contribution I: Job Search Inefficiency at the EE Margin

- Search theory literature has studied combinations of the following
 - 1. On-the-job search
 - 2. Heterogeneous separation risk
 - 3. Incomplete markets
 - $\rightarrow 1$ & 2 Jarosch (2023); 1 & 3 Lise (2013), Hubmer (2018); 2 & 3 Acemoglu and Shimer (1999);
- This paper: Develops a search model which studies all the above jointly
 - Two other papers which do this: Larkin (2024) and Caratelli (2024)
 - \rightarrow *Novel focus*: Efficiency of job mobility decisions, aggregate productivity implications
- Novel insight: Workers can make inefficient decisions on EE margin
 - Risk-averse workers overvalue job security relative to higher wages (productivity)
 - "Climbing to safety" potentially a source of aggregate productivity losses

Main Contribution II: UI Policy

- Previous literature: How does UI affect unemployed search behaviour?
 - Optimal UI literature focuses on trade-off between insurance vs adverse employment effects e.g. Baily (1978) Hopenhayn and Niccolini (1997), Chetty (2008), Landais et al. (2018)
 - Others emphasise role UI plays in helping unemployed into 'better' matches on UE margin e.g. Acemoglu and Shimer (1999), Marimon and Zilibotti (1999)
- This paper: How does UI affect search behaviour of employed?
 - Very little (if anything?) in literature studying this channel
- New role for UI: More generous UI can *counteract* distortion on EE margin
 - ↑ UI reduces "price of risk" and incentivises workers to accept riskier, more productive jobs
 - **GE effect:** workers happier to take more risks \implies *easier* for firms to hire

Main Theoretical Results

Simple two job example: Workers trade-off wages w with job security δ

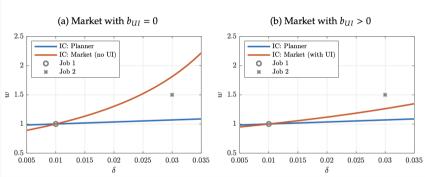
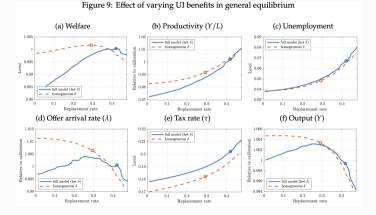



Figure 2: Indifference curves: Planner vs. market

- Worker job acceptance decision *distorted* relative to planner
- More generous UI *flattens* indifference curve slope

Main Quantitative Results

Key exercise: Tax-financed changes in UI generosity with GE effects

- Optimal replacement rate = 42% \rightarrow roughly equal to US average (40-50%)
- Non-monotonic profile of arrival rate, $\lambda \rightarrow$ novel finding relative to literature

- What drives heterogeneous separation risk across workers?
- This paper: Taken as given that some jobs are inherently riskier than others
 - Could proxy firm-characteristics e.g. industry, occupation, firm size etc.
- Conceptual Q: How many desirable EE moves associated with \uparrow separation risk?
- Other match characteristics contribute to separation risk
 - Worker: Ex ante differences Gregory et al. (2022); Human capital Lise and Postel-Vinay (2020)
 - Worker-firm: Mismatch Lise and Robin (2017), Baley et al. (2023), Location Bilal (2023)
- \rightarrow Factors can contribute to a desirable EE move *reducing* separation risk?

Comment II: Wage Bargaining

- Wage determination choice not innocuous when studying UI in GE
 - Wage rule: $w(z) \rightarrow$ no GE effect (by construction) Birinci et al. (2021)
 - Nash: $w(z, \theta, b_{UI}) \rightarrow$ strong GE effect from UI Mitman-Rabinovich (2015), Jung-Kuester(2015)
 - Auction: $w(z, \theta, b_{UI}, \tilde{w}) \rightarrow \text{GE}$ effect depends on job ladder Postel-Vinay-Robin (2002)
- Nash bargaining solution inapplicable in this environment Shimer (2006)
 - On the job search generates non-convex set in plane $\{J(a, z, \delta), W(a, z, \delta) U(a)\}$
 - Authors' solution: Wage rule based on AOB Hall and Milgrom (2008)

$$w(z) = (1 - \psi)\chi + \psi z$$

- Really neat solution, but no GE effect from UI \rightarrow empirically defensible?
 - \rightarrow Disagreement about size of GE effects Chodorow-Reich et al. (2019) vs Hagedorn et al. (2019)
- Question: How large would GE effects need to be to recover monotonicity in λ profile?

Comment(s) III

- Evidence on mechanism: Do EE flows should respond to UI changes?
 - Suggestion: Sensitivity of EE flows to identified UI shocks? e.g. Chodorow-Reich et al. (2019)
 - Direction $\textit{ambiguous} \rightarrow \textit{depends}$ on current level $\textit{b}_{\textit{UI}}$ e.g. Figure 9
- **Calibration:** Job 'riskiness' distribution $F^{D}(\delta)$ crucial for model but not observable
 - Authors: $F^{D}(\delta)$ pinned down by targeting EU rates by tenure groups (quite neat!)
 - Cleaning out worker characteristics will help, but still misses worker-firm characteristics
- Business cycles: Job ladder drastically slowed during GFC Moscarini and Postel-Vinay (2015)
 - At same time \uparrow UI generosity, both systematically and from federal interventions
 - MIT shock: Use model to study policy counterfactual
 - e.g. What would EE flows have been without \uparrow UI during the GFC period?
- Alternative policies: Arguably not obvious that UI is ideal tool to correct EE distortion?
 - Other policies can also change "price of risk" for employed workers
 - Could (partially) endogenise separation risk and compare UI with alternatives?

- Really nice paper (and a pleasure to read!)
 - Very clearly written
 - Genuinely novel theoretical contribution
 - Interesting quantitative findings, with room for more

- Key lessons:
 - Incomplete markets, OJS and separation rate heterogeneity generate *inefficient* EE moves
 - New role for UI to play in correcting job ladder distortions